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Abstract. A recent letter in this journal and a number of related publications have purported to
prove that Maxwell’s equations forbid the existence of linear non-reciprocal bi-isotropic (NRBI)
media. The basis of such proofs is shown to be unfounded, with the constraint on matter being
due not to electromagnetism but to symmetry. It is also shown that linear NRBI media may exist
in some situations in the form of certain magnetic cubic crystals. In addition, in their response
to an electromagnetic wave there are also magnetic cubics in which propagation, although not
perfectly isotropic, deviates in practice to an extent which is probably undetectable. Finally, the
existence of a Tellegen medium, as an example of a NRBI substance, is shown to be possible
in principle, in contrast to the findings of recent papers.

1. Introduction

In a recent publication [1] Lakhtakia and Weiglhofer presented a proof, based on a covariance
requirement deduced by Post [2], that a bi-isotropic medium must be reciprocal. Their
proof limited consideration to a linear and homogeneous substance. That non-reciprocal bi-
isotropic (NRBI) substances might occur has been tacitly assumed in the past [3], without,
however, any examples being identified. By contrast, the existence of non-reciprocal bi-
anisotropic media is well accepted [4, 5], of which antiferromagnetic chromium oxide is a
familiar example.

Following their paper in [1] Lakhtakia and Weiglhofer published, either jointly or
singly, numerous other papers [6, 7, 8, 9, 10, 11, 12, 13, 14] in which the implications
of the Post covariance requirement were investigated more fully, particularly with regard
to electromagnetic constraints on the existence of certain materials. The claim is made
in a number of these papers that the non-existence of NRBI media is a consequence of
electromagnetic theory [6, 7, 8, 11]. This claim and the possible existence of NRBI
substances are investigated in the present paper, using a different approach from that in
[1]. Because of this, certain terms and notation require definition or explanation.

We begin by stating that the fundamental macroscopic fields in matter are taken in this
paper to be the electric fieldE and the magnetic fieldB (rather thanH which, likeD, is
regarded as a response field). A variety of reasons for this choice appears in the literature
[15, 16, 17, 18].

The traditional definition of a bi-isotropic substance is one for which the constitutive
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relations have the form [1, 3, 4]

D = εE + αB
H = βE + kB

(1)

whereE andB are frequency-dependent fields andε, α, β, k are macroscopic scalar
properties of the substance, which, for a linear response, are independent of the fields.

The term ‘non-reciprocal’ has been used for a material whose measured response to
a source changes when the source and observer are interchanged [2, 3, 4]. This meaning
is closely related to the time-antisymmetric behaviour of the material, and, in this sense,
accords with the use in the literature of ‘non-reciprocal’ to describe an effect which changes
sign under time reversal [2, 19]. When it comes to describing the behaviour under time
reversal of the medium itself or of its properties, the terms ‘time-even’ and ‘time-odd’
will be used in this paper in preference to ‘reciprocal’ and ‘non-reciprocal’. This choice
conforms to established usage [20]. Time-odd substances are also termed ‘magnetic’ and
time-even ones ‘non-magnetic’.

A further difference in approach is that we are concerned primarily with the electric and
magnetic multipole moments per unit macroscopic volume (rather than with the response
fieldsD andH) that are induced by the fieldsE andB and, in certain situations, also by
their space and time derivatives. The expressions for such multipole moment densities serve
to define valid property tensors of the medium [21], to which symmetry considerations may
be applied in order to determine the conditions for their existence and also the nature and
number of their components. As an example, the magnetoelectric effect may be defined in
terms of the electric dipole moment density (the polarizationP ) induced by a uniform
magnetic fieldB and by the magnetic dipole moment density (the magnetizationM )
induced by a uniform electric fieldE [16, 22]. Once the moment densities are precisely
specified, the constitutive relations forD andH may be obtained when required.

To determine the extent of the constraints, if any, imposed on the structure of matter
by electromagnetic theory, the material tensors entering the constitutive relations for a
non-absorbing linear and homogeneous bi-anisotropic medium in the field of a plane time-
harmonic electromagnetic wave are analysed with regard to their time-inversion behaviour.
This analysis is presented in section 2, where it is shown that an isotropic medium is
necessarily reciprocal as a result of its symmetry and not of any constraint arising from
electromagnetic theory.

When they exist, the second-rank property tensors of magnetic cubic crystals are
isotropic in form [21]. The implication of this for possible bi-isotropic constitutive relations
is investigated in section 3 for uniform electric and magnetic fields and in section 4 for the
fields of a plane time-harmonic wave.

A Tellegen medium [23] is a postulated isotropic substance comprising macroscopically
small magnetoelectric particles, and would therefore exhibit a NRBI response to uniform
electric and magnetic fields. Despite recent arguments against the existence of such a
medium [6, 10, 12], the matter is considered again using a different approach. This is
presented in section 5.

2. Effect of symmetry on constitutive relations

The proof in [1] that a linear bi-isotropic medium must be reciprocal begins with the
constitutive relations describing the response of a linear and homogeneous bi-anisotropic
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medium to a plane time-harmonic wave, namely

Dα = εαβEβ + ααβBβ
Hα = βαβEβ + kαβBβ .

(2)

We consider such a wave propagating through the medium with an angular frequencyω,
which is far from any absorption band. The wave fieldsE andB that enter (2) are complex.
We takeE in the form

E = E0 exp{−iω(t − nr · σ/c)} (3)

where c is the speed of light in a vacuum,σ the unit vector perpendicular to the plane
wavefront, andn the refractive index of the medium for the propagation directionσ and
the polarization state described by the amplitudeE0, which may be complex.

For complex fields the four material parameters in (2) are in general complex. As
the time-even and time-odd parts of these parameters are separately required for symmetry
considerations, each is written in the form

Uαβ = Ur
αβ − iUi

αβ (4)

whereUr
αβ andUi

αβ are real in the absence of absorption. Then equation (2) is readily
shown to be, for the form of the field in (3),

Dα = εrαβEβ + ω−1εiαβĖβ + αrαβBβ + ω−1αiαβḂβ

Hα = βrαβEβ + ω−1βiαβĖβ + krαβBβ + ω−1kiαβḂβ
(5)

in which Ė = ∂E/∂t and Ḃ = ∂B/∂t . Although the complex form in (3) was used to
obtain (5), the fieldsE, Ė, B andḂ in it may nevertheless be understood to be real (see
pp 76, 77 of [20]). It has been shown for negligible absorption [20, 24, 25] that

αrαβ = −βrβα αiαβ = βiβα . (6)

We now determine the time-inversion behaviour of the eight property tensors in (5). To
do this we note that for Maxwell’s equations to be invariant under time inversion,D must
be time-even andH time-odd. From their definitionsE is time-even, whileB is time-
odd. By inspection of (5), with the understanding that all quantities are real, the following
classification is obtained:

Time-even: εrαβ, αiαβ, βiαβ, krαβ

Time-odd: εiαβ, αrαβ, βrαβ, kiαβ .
(7)

By Neumann’s principle [21] a magnetic medium may possess both time-even and time-
odd property tensors, while only the former may belong to a non-magnetic substance. Thus
equation (5) describes a linear and homogeneous bi-anisotropic magnetic medium, and to
this point no limitation has been placed on the structure of the medium.

We now introduce such a constraint by assuming that the medium has isotropic
symmetry. Only such a medium has all its property tensors isotropic, including any time-odd
ones should they exist. However, Van Vleck [26] and Buckinghamet al [27] have shown
that an isotropic medium may not possess any time-odd macroscopic property tensors, even
when its constituent molecules are time-odd, by having, for example, a magnetic dipole.
The proof of this statement rests on the effect of time reversal at the microscopic level (see
section 5) and is quite independent of electromagnetic theory. Thus it is isotropic symmetry
and not Maxwell’s equations that limit bi-isotropic media to being time-even or reciprocal.

The arguments in [26] and [27] apply only if the medium is isotropic. Could there
be media which have bi-isotropic constitutive relations but which are not isotropic? Cubic
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crystals suggest themselves, since all their second-rank property tensors are isotropic, while
in general their higher-rank ones are not [21]. For them the proof by Lakhtakia and
Weiglhofer based on Post’s covariance requirement, might then, if correct, be applicable.
However, magnetic cubic crystals exist and are examples of non-reciprocal or time-odd
systems [21].

For an isotropic medium only the time-even tensors in (7) survive and are now isotropic.
Then from (5) and (6)

D = εrE − iαiB = εrE + ω−1αiḂ

H = −iαiE + krB = ω−1αiĖ + krB .
(8)

These equations now have a time-even (reciprocal) bi-isotropic form, which is characteristic
of a chiral fluid.

In a recent paper [6] entitled ‘On a medium constraint arising directly from Maxwell’s
equations’, Weiglhofer uses constitutive relations in the bi-isotropic form

D = εE + (α + β)B
H = (−α + β)E + kB

(9)

and shows thatα, termed the ‘non-reciprocity parameter’, does not enter Maxwell’s
equations when (9) are substituted forD andH. The author then argues thatα may
be set equal to zero for a bi-isotropic medium; that is, Maxwell’s equations constrain such
a medium to be reciprocal. However, Weiglhofer’sα is the isotropic form of the dynamic
magnetoelectric tensorαrαβ = −βrβα in (5) and (6), and, as shown above, this time-odd tensor
vanishes for an isotropic system. The constraint on such a medium arises from symmetry,
not from Maxwell’s equations.

3. A magnetic medium in uniform E and B fields

Uniform fields are constant in time and thus independent. They induce in a linear and
homogeneous medium a polarization and magnetization according [16] to

Pα = ε0χ
(e)
αβ Eβ +GαβBβ

Mα = µ−1
0 χ

(m)
αβ Bβ + GαβEβ

(10)

where the quantitiesχ(e)αβ , Gαβ, χ
(m)
αβ , Gαβ are valid property tensors of the medium [21].

To determine their behaviour under space and time inversion, we begin by noting thatP
is a polar time-even vector, whileM is an axial time-odd one. This follows from their
definitions:

P =
∑
i

qiri/1V (11)

M =
∑
i

(qi/2mi)(ri × pi + gisi )/1V . (12)

In theseri is the displacement from an arbitrary origin inside the macroscopic volume
element1V of a particle with chargeqi , massmi , linear momentumpi , spin si , and
g-factorgi .

Inspection of (10) then yields the classification:

Polar time-even: χ
(e)
αβ , χ

(m)
αβ

Axial time-odd: Gαβ, Gαβ .
(13)
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Thus equations (10) describe the induction ofP andM by uniformE andB in a general
anisotropic magnetic medium. The tensorsGαβ and Gαβ have been shown to have non-
vanishing components for 58 of the 90 magnetic symmetry point groups [28, 29], so that it is
in these that the magnetoelectric effect is exhibited. Symmetry considerations also indicate
that the electric and magnetic susceptibility tensorsχ

(e)
αβ andχ(m)αβ , respectively, exist for all

magnetic and non-magnetic crystals [21].
The static magnetoelectric tensorsGαβ and Gαβ can be simply shown by quantum-

mechanical perturbation theory to be related [25] by

Gαβ = Gβα (14)

although other approaches have been used to prove this [16].
We now consider the possible isotropy of the three independent property tensors in (13).

Use of tables 7 and 4d in Birss [21] shows that for all 11 cubic magnetic classesχ
(e)
αβ and

χ
(m)
αβ exist and are isotropic. Of these 11 classesGαβ exists and is isotropic for five, namely

23, m3, 432, 43m, m3m . (15)

Thus it is for these five magnetic point groups that the medium responds isotropically to
both uniformE andB fields.

To express this conclusion in the form of constitutive relations we use

D = ε0E + P
H = µ−1

0 B −M
(16)

which apply when the fields are uniform. Then from (16), (10), and (14)

D = ε0(1+ χ(e))E +GB
H = µ−1

0 (1− χ(m))B −GE .
(17)

As equation (17) is identical in form to (1), it is evident that there exist magnetic (or non-
reciprocal) media whose constitutive relations for uniform electric and magnetic fields are
bi-isotropic, namely the magnetic crystals belonging to the five cubic point groups in (15).

4. A plane time-harmonic wave in a magnetic crystal

Since no crystal is perfectly isotropic, it is evident that a plane time-harmonic wave will not
propagate isotropically through it. Nevertheless, in view of the controversy regarding the
existence of NRBI media, it is of interest to determine the extent to which wave propagation
in magnetic cubic crystals, in particular, deviates from isotropic. This might allow one to
identify media which, to a very good approximation, behave as NRBI for wave propagation
through them.

To investigate this matter we begin by recognizing that the wave possesses not only
electric and magnetic fields but also, because of its finite wavelength, field gradients of
all orders. In addition, it has time-derivative fields. However, because of the harmonic
condition

Ë = −ω2E,
···
E = −ω2Ė, . . .

only two of the time-derivative fields are independent, which we take to be the zeroth and
the first. Thus the wave interacts with matter [20, 24, 25] through the fields

Eα, Ėα; ∇βEα, ∇βĖα; . . . ; Bα, Ḃα; ∇βBα, ∇βḂα; . . . . (18)

The existence of all these fields is confirmed by a quantum-mechanical treatment [30, 31].
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For wavelengths very much larger than the dimensions of a macroscopic volume
element, the fields in (18) may be considered to induce multipole moments in each
macroscopic volume element. The relative magnitudes of the multipole contributions to
a physical effect due to electromagnetic radiation [32] are

Electric dipole�
{

Electric quadrupole
Magnetic dipole

�
{

Electric octopole
Magnetic quadrupole

� . . . . (19)

Against this background we now investigate the behaviour of a magnetic crystal exposed
to a plane time-harmonic wave. In the approximation where multipole contributions beyond
those of electric quadrupole and magnetic dipole are omitted, the induced multipole moment
densities linear in the fields of the wave [25], in a modified form of the notation of
Buckingham [24] and Barron [20], are

Pα = ε0χαβEβ + ω−1ε0χ
′
αβĖβ + 1

2aαβγ∇γ Eβ + 1
2ω
−1a′αβγ∇γ Ėβ

+GαβBβ + ω−1G′αβḂβ + · · · (20)

Qαβ = aαβγEγ + ω−1a′αβγ Ėγ + · · · (21)

Mα = GαβEβ + ω−1G ′αβĖβ + · · · . (22)

In equation (21)Qαβ is the electric quadrupole moment density, defined by

Qαβ =
∑
i

qirαirβi/1V . (23)

Equations (20)–(22) are consistent in their multipole order, as may be seen from the
quantum-mechanical expressions for the property tensors in these equations [25], or may
be suggested intuitively by the well known associations [33]

Electric field∼ Electric dipole

First gradient ofE ∼ Electric quadrupole

Magnetic field∼ Magnetic dipole.

It is of interest to note that equation (22) contains no magnetic susceptibility term, as
appeared in (10). This is because it is of magnetic quadrupole order [32], since its quantum-
mechanical expression, as derived by Van Vleck [26], contains the product of two magnetic
dipole moment matrix elements. Consequently it falls outside our multipole approximation.

The property tensors in (20)–(22) depend on frequency, satisfy the Kramers–Kronig
relations [20], and in the absence of absorption are real, as confirmed by their quantum-
mechanical expressions, which also show [25] that

χαβ = χβα χ ′αβ = −χ ′βα aαβγ = aαγβ a′αβγ = a′αγβ
aαβγ = aγαβ a′αβγ = −a′γαβ Gαβ = Gβα G ′αβ = −G′βα .

(24)

Thus of the ten property tensors in (20)–(22) six are independent. Their space–time
classification can be readily determined by a similar procedure to that in section 2, and
is presented in table 1.

To derive the wave equation we useE in (3), together with the Maxwell equations

∇ ×E = −Ḃ ∇ ×B = µ0(ε0Ė + J + Jb) (25)
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Table 1. Space–time classification of the independent multipole property tensors in (20)–(22).

Time-even Time-odd

Relative multipole order Polar Axial Polar Axial

Electric dipole χαβ χ ′αβ

Electric quadrupole
Magnetic dipole aαβγ G′αβ a′αβγ Gαβ

whereE andB are macroscopic fields andJ andJb are the free and bound current densities
respectively [17, 34]. In the electric quadrupole–magnetic dipole approximation [34]

Jbα = Ṗα − 1
2∇βQ̇αβ + (∇ ×M )α + · · · . (26)

The wave equation for a source-free medium follows from (3), (25), (26), (20)–(22) and
to the order of electric quadrupoles and magnetic dipoles is

[n2σασβ − (n2− 1)δαβ + χαβ − iχ ′αβ + ε−1
0 c−1n(Us

αβ − iUa
αβ)]E0β = 0 . (27)

In this

Us
αβ = σγ [−εβγ δGαδ − εαγ δGβδ + 1

2ω(a
′
αβγ + a′βαγ )] = Us

βα (28)

Ua
αβ = σγ [−εβγ δG′αδ + εαγ δG′βδ − 1

2ω(aαβγ − aβαγ )] = −Ua
βα . (29)

Equation (27) is the fundamental equation, in the electric quadrupole–magnetic dipole
approximation, which describes the propagation of a plane time-harmonic wave through
a linear source-free anisotropic magnetic medium in a direction specified by the wavefront
normalσ.

The tensorUa
αβ in (29) is time-even, as table 1 shows, and it accounts for any reciprocal

optical activity which is manifest in magnetic and non-magnetic crystals [25, 35]. For
those cubic crystals for whichUa

αβ exists tables 7, 4a, 4d, and 4e in Birss [21] show that
it is isotropic. By contrast, the tensorUs

αβ in (28) is time-odd and, because ofa′αβγ in
it, is not isotropic for the magnetic cubics for which it exists, as follows from the tables
in Birss [21]. Accordingly, within the electric quadrupole–magnetic dipole approximation,
wave propagation in magnetic cubics is isotropic only for those symmetry classes for which
a′αβγ in Us

αβ vanishes, namely

m3, 432, 43m, m3m, m3m, m3m . (30)

In the remaining five magnetic cubic classes the propagation anisotropy is manifest in linear
birefringence, an expression for which has been derived in terms of a component ofa′αβγ
when propagation is along a cube edge [25].

If the wave equation were derived to the next multipole order, would the six magnetic
cubic symmetries in (30) still permit isotropic propagation? It is known that anisotropic
propagation, as manifest in linear birefringence, occurs in non-magnetic cubic crystals.
This was predicted over a century ago by Lorentz [36] and later measured by him and
others [37, 38, 39]. Subsequently, a multipole theory to the order of electric octopoles
and magnetic quadrupoles has shown that all non-magnetic cubic symmetries exhibit linear
birefringence [35]. As magnetic crystals possess the same time-even tensors as their non-
magnetic counterparts [21], the magnetic cubic classes in (30) are therefore anisotropic
to wave propagation, when this is described in the electric octopole–magnetic quadrupole
approximation.
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Thus magnetic cubics belonging to the six classes in (30) are the only non-reciprocal
substances that will transmit a plane time-harmonic wave isotropically when described
within both the electric dipole and the electric quadrupole–magnetic dipole approximations,
although not to higher multipole orders. However, in practice the non-isotropy of
propagation, being of electric octopole–magnetic quadrupole order, will probably be too
small to detect. For instance, the linear birefringence due to such induced multipoles
is typically 10−6 at optical frequencies [37], roughly two orders of magnitude smaller
than circular birefringence, which is explained in the electric quadrupole–magnetic dipole
approximation [40]. (These relative magnitudes provide a partial justification of (19).)

It is of interest to note that three of the magnetic classes in (15) that respond bi-
isotropically to uniformE andB fields also appear in (30), that is, they transmit a plane
time-harmonic wave isotropically when described in the electric quadrupole–magnetic dipole
approximation but not to higher multipole orders. These common classes are

432, 43m, m3m (31)

of which the first is chiral.

5. The Tellegen medium

A particular example of a magnetoelectric medium was conceptualized by Tellegen in
1948 [23], namely one comprising very small macroscopic particles, randomly oriented as in
a liquid suspension, with each particle containing parallel electric and magnetic dipoles (they
could equally well be antiparallel). A very large number of ferromagnetic particles, each
glued in this way to a microcrystal of an electret and then suspended in a colloidal solution,
would in principle constitute a Tellegen medium. (Colloids of ferromagnetic particles are
already known, being examples of a magnetic fluid [41].)

Were a uniform electric fieldE to be applied to a Tellegen medium, the partial alignment
of its electric dipoles would produce macroscopic electric and magnetic dipoles parallel to
E, and similarly if a uniform magnetic field were applied. Thus the four property tensors
in (10) would be isotropic and the Tellegen medium would be NRBI in its response to
uniform fields.

A real Tellegen medium has never been produced, while its equivalent on the molecular
scale is disallowed [26, 27]. So may such a medium really exist? An emphatic negative
has been given in two recent papers by Lakhtakia:‘The Tellegen medium is “A boojum,
you see”’ [10] and ‘Tellegen media: a fecund but incorrect speculation’[12]. Two main
arguments are used in these papers. One is that the magnetoelectric tensor of an isotropic
medium is zero (this result being claimed [10] to follow from a covariance condition [1],
whereas it is due to the constraint of isotropic symmetry, as discussed in section 2). The
other argument is based on Weiglhofer’s demonstration in [6] that the magnetoelectric tensor
does not enter Maxwell’s equations when the bi-isotropic constitutive relations in (9) are
substituted into them. Accordingly, if a Tellegen medium is to be shown to exist in principle,
it becomes necessary to address these two arguments.

We begin by identifying the basis of the proof by Van Vleck [26] that the molecular
equivalent of a Tellegen medium is forbidden. In effect, it is that the time-reversal operator
T is a symmetry operator of the molecular Hamiltonian, so doubling for a paramagnetic
molecule any other degeneracies and giving rise to states

ψ and T ψ = ψ∗
which have equal probability and opposite time behaviour [42]. Thus in a fluid of
paramagnetic molecules, which also possess an electric dipole (a time-even property), there
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are necessarily as many with the magnetic dipole (a time-odd property) pointing in one
direction, relative to the electric dipole, as in the opposite direction. By contrast, this
situation does not occur for the macroscopic ‘molecules’ of parallel dipoles in a Tellegen
medium, simply because they have all been rigidly constructed in this way, with the
implication that none exists in the opposite time state with antiparallel dipoles. Furthermore,
from symmetry considerations a system with spherical rotational symmetry may possess
second-rank axial tensors [42], which can be shown to include time-odd ones like the
magnetoelectric tensor in (13). Thus far, then, there seems to be no reason to exclude the
existence in principle of a Tellegen medium.

In regard to the second argument, Weiglhofer has correctly established that in its
response to a radiation field a Tellegen medium behaves as if its magnetoelectric tensor
were zero. However, as shown earlier in this section, such a medium would respond
magnetoelectrically to uniform fields, so it would manifest itself physically in this way.

Accordingly, not only may a Tellegen medium exist but it would be experimentally
distinguishable from non-magnetoelectric fluids.

6. Conclusion

Various claims have been made [1, 6] that electromagnetic theory places a constraint on the
structure of matter, in particular that a linear bi-isotropic medium is necessarily non-magnetic
(or reciprocal). In contrast to these claims it is shown in section 2 that symmetry and not
electromagnetic theory is responsible for this constraint. To this end we have analysed
the behaviour under time reversal of the material properties which enter the constitutive
relations for a linear and homogeneous anisotropic medium in the field of a plane time-
harmonic electromagnetic wave. For the special case of an isotropic medium we use a result
deduced by Van Vleck [26] and Buckinghamet al [27] to show that its constitutive relations
reduce to the bi-isotropic form characteristic of a non-magnetic or reciprocal medium.

Although cubic crystals have isotropic second-rank property tensors, they do not possess
isotropic symmetry [21], so that the result in [26] and [27] does not apply to them.
Accordingly, it is of relevance to the main issue of this paper to determine whether magnetic
cubic crystals, being time-odd or non-reciprocal, are described by bi-isotropic constitutive
relations. It is shown in section 3 that magnetic cubics with the point group symmetries
in (15) respond bi-isotropically to uniform electric and magnetic fields. In this sense such
crystals are NRBI media.

In section 4 a multipole theory is used to derive an equation for the propagation of
a plane time-harmonic electromagnetic wave through a magnetic cubic crystal, since this
has the highest symmetry of any non-isotropic system. This equation allows the extent
of anisotropy of propagation to be determined. It is found that to the order of electric
quadrupoles and magnetic dipoles only the magnetic cubics with the point group symmetries
in (30) will support isotropic propagation. However, when allowance is made in the theory
for higher-order multipoles, propagation in these crystals is seen to be anisotropic, but to an
extent which is probably undetectable in practice. Accordingly, the magnetic cubics in (30)
would appear to be NRBI to a very good approximation.

Recent electromagnetic theories have claimed to prove that a Tellegen medium is
forbidden [6, 10, 12], this being an example of a NRBI substance with very small
macroscopic ‘molecules’ randomly oriented. In section 5 it is shown that, despite these
theories, such a medium may exist in principle. Direct experimental evidence for this
would be the isotropic polarization and magnetization induced in it by either a uniform
electric or magnetic field.
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